Exact and numerical solutions for nonlinear differential equation of Jeffrey-Hamel flow

author

  • R. Ellahi ww
Abstract:

This article doesn't have abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

New Exact Solutions for New Model Nonlinear Partial Differential Equation

In this paper we propose a new form of Padé-II equation, namely, a combined Padé-II andmodified Padé-II equation.Themapping method is a promising method to solve nonlinear evaluation equations. Therefore, we apply it, to solve the combined PadéII and modified Padé-II equation. Exact travelling wave solutions are obtained and expressed in terms of hyperbolic functions, trigonometric functions, r...

full text

Application of the new extended (G'/G) -expansion method to find exact solutions for nonlinear partial differential equation

In recent years, numerous approaches have been utilized for finding the exact solutions to nonlinear partial differential equations. One such method is known as the new extended (G'/G)-expansion method and was proposed by Roshid et al. In this paper, we apply this method and achieve exact solutions to nonlinear partial differential equations (NLPDEs), namely the Benjamin-Ono equation. It is est...

full text

Exact and numerical solutions of linear and non-linear systems of fractional partial differential equations

The present study introduces a new technique of homotopy perturbation method for the solution of systems of fractional partial differential equations. The proposed scheme is based on Laplace transform and new homotopy perturbation methods. The fractional derivatives are considered in Caputo sense. To illustrate the ability and reliability of the method some examples are provided. The results ob...

full text

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

full text

Exact travelling wave solutions for some complex nonlinear partial differential equations

This paper reflects the implementation of a reliable technique which is called $left(frac{G'}{G}right)$-expansion  ethod for  constructing exact travelling wave solutions of nonlinear partial  differential equations. The proposed algorithm has been successfully tested on two two selected equations, the balance numbers of which are not positive integers namely Kundu-Eckhaus equation and  Derivat...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  1- 7

publication date 2011-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023